Mid-mantle anisotropy in subduction zones and deep water transport
نویسندگان
چکیده
The Earth’s transition zone has until recently been assumed to be seismically isotropic. Increasingly, however, evidence suggests that ordering of material over seismic wavelengths occurs there, but it is unclear what causes this. We use the method of source-side shear wave splitting to examine the anisotropy surrounding earthquakes deeper than 200 km in slabs around the globe. We find significant amounts of splitting ( 2.4 s), confirming that the transition zone is anisotropic here. However, there is no decrease in the amount of splitting with depth, as would be the case for a metastable tongue of olivine which thins with depth, suggesting this is not the cause. The amount of splitting does not appear to be consistent with processes in the ambient mantle, such as lattice-preferred orientation development in wadsleyite, ringwoodite, or MgSiO3-perovskite. We invert for the orientation of several mechanisms—subject to uncertainties in mineralogy and deformation—and the best fit is given by updip flattening in a style of anisotropy common to hydrous phases and layered inclusions. We suggest that highly anisotropic hydrous phases or hydrated layering is a likely cause of anisotropy within the slab, implying significant water transport from the surface down to at least 660 km depth.
منابع مشابه
Mid-mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid-mantle deformation
Observations of seismic anisotropy can offer relatively direct constraints on patterns of mantle deformation, but most studies have focused on the upper mantle. While much of the lower mantle is thought to be isotropic, several recent studies have found evidence for anisotropy in the transition zone and uppermost lower mantle (the mid-mantle), particularly in the vicinity of subducting slabs. H...
متن کاملHigh-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle
[1] Arc volcanism is intimately linked to mineral dehydration reactions in the subducting oceanic mantle, crust, and sediments. The location of slab dehydration reactions depends strongly on the temperature and pressure conditions at the top of the subducting plate and hence on the detailed thermal structure of subduction zones. A particularly important physical property of subduction zone ther...
متن کاملConstraints on Subduction Geodynamics from Seismic Anisotropy
[1] Much progress has been made over the past several decades in delineating the structure of subducting slabs, but several key aspects of their dynamics remain poorly constrained. Major unsolved problems in subduction geodynamics include those related to mantle wedge viscosity and rheology, slab hydration and dehydration, mechanical coupling between slabs and the ambient mantle, the geometry o...
متن کاملFrequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones
Despite its importance for ourunderstandingof physical processes associatedwith subduction, the geometry of mantle flow in subduction zones remains poorly understood, particularly in the mantle wedge above subducting slabs. Constraints onmantle flowanddeformation canbeobtainedbymeasurements of shearwave splitting, a valuable tool used to characterize the geometry and strength of seismic anisotr...
متن کاملThermal structure and dynamics of subduction zones: insights from observations and modeling
Subduction zones form dominant tectonic features on the Earth and are the site of large underthrusting earthquakes and explosive arc volcanism. They are also the only locations with deep earthquakes in the Earth’s interior. Major questions remain regarding the dynamics of subduction zones, including aspects such as the role of water in the formation of arc volcanism and deep earthquakes, the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017